TMEM16A channels generate Ca²⁺-activated Cl⁻ currents in cerebral artery smooth muscle cells.

نویسندگان

  • Candice Thomas-Gatewood
  • Zachary P Neeb
  • Simon Bulley
  • Adebowale Adebiyi
  • John P Bannister
  • M Dennis Leo
  • Jonathan H Jaggar
چکیده

Transmembrane protein (TMEM)16A channels are recently discovered membrane proteins that display electrophysiological properties similar to classic Ca(2+)-activated Cl(-) (Cl(Ca)) channels in native cells. The molecular identity of proteins that generate Cl(Ca) currents in smooth muscle cells (SMCs) of resistance-size arteries is unclear. Similarly, whether cerebral artery SMCs generate Cl(Ca) currents is controversial. Here, using molecular biology and patch-clamp electrophysiology, we examined TMEM16A channel expression and characterized Cl(-) currents in arterial SMCs of resistance-size rat cerebral arteries. RT-PCR amplified transcripts for TMEM16A but not TMEM16B-TMEM16H, TMEM16J, or TMEM16K family members in isolated pure cerebral artery SMCs. Western blot analysis using an antibody that recognized recombinant (r)TMEM16A channels detected TMEM16A protein in cerebral artery lysates. Arterial surface biotinylation and immunofluorescence indicated that TMEM16A channels are located primarily within the arterial SMC plasma membrane. Whole cell Cl(Ca) currents in arterial SMCs displayed properties similar to those generated by rTMEM16A channels, including Ca(2+) dependence, current-voltage relationship linearization by an elevation in intracellular Ca(2+) concentration, a Nerstian shift in reversal potential induced by reducing the extracellular Cl(-) concentration, and a negative reversal potential shift when substituting extracellular I(-) for Cl(-). A pore-targeting TMEM16A antibody similarly inhibited both arterial SMC Cl(Ca) and rTMEM16A currents. TMEM16A knockdown using small interfering RNA also inhibited arterial SMC Cl(Ca) currents. In summary, these data indicate that TMEM16A channels are expressed, insert into the plasma membrane, and generate Cl(Ca) currents in cerebral artery SMCs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The bestrophin- and TMEM16A-associated Ca2+-activated Cl– channels in vascular smooth muscles

The presence of Ca(2+)-activated Cl(–) currents (I(Cl(Ca))) in vascular smooth muscle cells (VSMCs) is well established. ICl(Ca) are supposedly important for arterial contraction by linking changes in [Ca(2+)]i and membrane depolarization. Bestrophins and some members of the TMEM16 protein family were recently associated with I(Cl(Ca)). Two distinct I(Cl(Ca)) are characterized in VSMCs; the cGM...

متن کامل

Expression profile and protein translation of TMEM16A in murine smooth muscle.

Recently, overexpression of the genes TMEM16A and TMEM16B has been shown to produce currents qualitatively similar to native Ca(2+)-activated Cl(-) currents (I(ClCa)) in vascular smooth muscle. However, there is no information about this new gene family in vascular smooth muscle, where Cl(-) channels are a major depolarizing mechanism. Qualitatively similar Cl(-) currents were evoked by a pipet...

متن کامل

TMEM16A/ANO1 channels contribute to the myogenic response in cerebral arteries.

RATIONALE Pressure-induced arterial depolarization and constriction (the myogenic response) is a smooth muscle cell (myocyte)-specific mechanism that controls regional organ blood flow and systemic blood pressure. Several different nonselective cation channels contribute to pressure-induced depolarization, but signaling mechanisms involved are unclear. Similarly uncertain is the contribution of...

متن کامل

Activity of Ca2+ -activated Cl- channels contributes to regulating receptor- and store-operated Ca2+ entry in human pulmonary artery smooth muscle cells

Intracellular Ca(2+) plays a fundamental role in regulating cell functions in pulmonary arterial smooth muscle cells (PASMCs). A rise in cytosolic Ca(2+) concentration ([Ca(2+)](cyt)) triggers pulmonary vasoconstriction and stimulates PASMC proliferation. [Ca(2+)](cyt) is increased mainly by Ca(2+) release from intracellular stores and Ca(2+) influx through plasmalemmal Ca(2+)-permeable channel...

متن کامل

Increased TMEM16A-encoded calcium-activated chloride channel activity is associated with pulmonary hypertension.

Pulmonary artery smooth muscle cells (PASMCs) are more depolarized and display higher Ca(2+) levels in pulmonary hypertension (PH). Whether the functional properties and expression of Ca(2+)-activated Cl- channels (Cl(Ca)), an important excitatory mechanism in PASMCs, are altered in PH is unknown. The potential role of Cl(Ca) channels in PH was investigated using the monocrotaline (MCT)-induced...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 301 5  شماره 

صفحات  -

تاریخ انتشار 2011